http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service

Implementing a Basic Hello World WCF Service

By Mike Liu, 18 May 2013

Download source code - 42.5 KB

An updated version of this article for .NET 4.5 can be found at Implementing a Basic Hello World WCF Service (v4.5)

This is the first article I've written on WCF/LINQ. In the first three articles on CodeProject.com, I'll explain the
fundamentals of Windows Communication Foundation (WCF), including:

Implementing a Basic Hello World WCF Service (this article)
Implementing a WCF Service with Entity Framework
Concurrency Control of a WCF Service with Entity Framework

In the other articles, I'll explain LINQ, LINQ to SQL, Entity Framework, and LINQ to Entities. Followings are the
articles I wrote for LINQ, LINQ to SQL, and LINQ to Entities:

Introducing LINQ—Language Integrated Query
LINQ to SQL: Basic Concepts and Features
LINQ to SQL: Advanced Concepts and Features
LINQ to Entities: Basic Concepts and Features

In this article, we will manually implement a basic WCF Service from scratch, step by step, with clear instructions
and precise screen snapshots. You will have a thorough understanding of what WCF is under the hood after you
read this article. Visual Studio 2010 under Windows 7 will be used for all screenshots of this article.

We will build the WCF Service manually from scratch, meaning we will not use any Visual Studio 2010 template
to create the service. We will also create the host application and the test client application manually, including
generating the proxy and configuration files manually with the tool svcutils.exe. In your real project, you can and
should utilize Visual Studio 2010 to help with these tasks, but manually doing the actual work is a great way for
you to understand what WCF is really like under the hood. This will help you to better understand the why of
those WCF templates within Visual Studio.

We will build a HelloWorld WCF Service by carrying out the following steps:

Create the solution and project

Create the WCF service contract interface

Implement the WCF Service

Host the WCF Service in the ASP.NET Development Server
Create a client application to consume this WCF Service

http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
http://www.codeproject.com/script/Membership/View.aspx?mid=4290147
http://www.codeproject.com/KB/WCF/HelloWorldWCF/helloworld.zip
http://www.codeproject.com/Articles/531332/Implementing-a-Basic-Hello-World-WCF-Service-v4-5
http://www.codeproject.com/KB/WCF/HelloWorldWCF.aspx
http://www.codeproject.com/KB/WCF/WCFandEF.aspx
http://www.codeproject.com/KB/WCF/WCFandEFConcurrency.aspx
http://www.codeproject.com/KB/linq/IntroducingLINQ.aspx
http://www.codeproject.com/KB/linq/LINQtoSQLBasic.aspx
http://www.codeproject.com/KB/linq/LINQtoSQLAdvanced.aspx
http://www.codeproject.com/Articles/246861/LINQ-to-Entities-Basic-Concepts-and-Features
Ijon Tichy
Rectangle

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

reating the HelloWorld solution and project

Before we can build the WCF Service, we need to create a solution for our service projects. We also need a
directory in which to save all the files. Throughout this article, we will save our project source code in
theC:\SOAwithWCFandLINQ\Projects directory. We will have a subfolder for each solution we create, and under
this solution folder, we will have a subfolder for each project.

For this HelloWorld solution, the final directory structure is shown in the following image:

R 20 000002 emwmwewo

GIJR | SOMRCEaNAING » Projecs » Heloord » -
R N .

Organize v Include in hibrary » Share with v New folder 3= w [
I, Program Files A Name Date modified Type Sze
. ProgramData : ! SN .
SOAWithWCFandLINQ . . HelloWorldClient 1/14/2010 8:40 PM File folder
a M an |=
< B 1= 1. HelloWorldService 1/14/2010 8:40 PM File folder
4 | Projects
- l':llow ”). HostCmdLineApp 1/14/2010 8:40 PM File folder
. He or
: - | HostDevServer 1/14/20108:40 PM File folder
. HelloWo ent
- e | Hostlls 1/14/20108:40 PM File folder
I |, HelloWorldService “55) & 100 -
HostCimdLineA 7 HelleWorld.sin 12/26/2009 9:44 PM Microsoft Visua... 7 KB
. HostCmdLin
. HostD PP HelloWorld.suo Visual Studio S 40 KB
L 0 evServer
'Y HostllS >
1
‘ ’ 7 items

Note: you don't need to manually create these directories via Windows Explorer; Visual Studio will create them
automatically when you create the solutions and projects.

Now, follow these steps to create our first solution and the HelloWorld project:

Start Visual Studio 2010. If the Open Project dialog box pops up, click Cancel to close it.
Go to menu File | New | Project. The New Project dialog window will appear.

New o S 2] ==
| tecent tempiies [e P 2)l seorchitated 1em 2]

e Tempts ™ BankSolstion Visusl Studio Sohutions | TP VUl Studio Solutions
Wisual Basic o Create an empty solution containing no
Visual C# projects
Vigisl Cae

i Wisual F#

N 4 Other Project Types E

Setup and Deployrment
\ Extensibility

N Database
i Modehng Projects -

Online Templates

HalloWorld
€500 Ao it W FandLING Prejects! [» =

Salution name: Helbstiasid Create directory for salution
__ Add ta sousce comtrel

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

From the left-hand side of the window (Installed Templates), expand Other Project Types and then select
Visual Studio Solutions as the template. From the middle side of the window, select Blank Solution.

At the bottom of the window, type HelloWorld as the Name, and C:\\SOAwithWCFandLINQ\Projects\ as
the Location. Note that you should not enter HelloWorld within the location, because Visual Studio will
automatically create a folder for a new solution.

Click the OK button to close this window, and your screen should look like the following image, with an

empty solution.

[# HelloWorkd - Mecrosolt Visual Studw M
Ele Edit Yiew Project Debug Team Data Jook Apchibecture Test Apalyze Mfindow Help |
G J Gl @i s oAl - -5-5]) “E ;

Sodution Explorer

il el
; Solution 'HelloWorld' [0 projects)

Ripdy s T

g
-

73 Sclution Explorer [G RERTEN

Depending on your settings, the layout may be different. But you should still have an empty solution in
your Solution Explorer. If you don't see Solution Explorer, go to menu View | Solution Explorer, or press
Ctrl+Alt+L to bring it up.

In the Solution Explorer, right-click on the solution, and select Add | New Project... from the context
menu. You can also go to menu File | Add | New Project... to get the same result. The following image shows the
context menu for adding a new project:

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

[0 HeloWorid - Micsasoh Visusl Stud e S : T
(e Vo P e e i T i :
E-_n'.J'.}.JJ f 2S00 - =050 b i

Solution Explodes ol

=
T Soiytion HelleWorld' progects)

Calculate Code Metnics

Mew Propect Agd '
Existing Progect __:;‘ Add Solution to Scurce Control.
Mew feb Ste.
Ennetonigy Wely Sate Rename
o Mew lem... Cirl+Shift- &] Open Folder n Windows Explores
3 boshng Beme. Shaft- LJE- 4 Ty Properties Alts Erber
4 Mew Soluton Folger

= ? Solutron Explones

8. The Add New Project window should now appear on your screen. In the left-hand side of this window
(Installed Templates), select Visual C# as the template, and on the middle side of the window, select Class Library.
9. At the bottom of the window, type HelloWorldService as the Name.

LeaveC:\SOAwithWCFandLINQ\Projects\HelloWorld as the Location. Again, don't add HelloWorldService to the
location, as Visual Studio will create a subfolder for this new project (Visual Studio will use the solution folder as
the default base folder for all the new projects added to the solution).

e PRI W == ﬂ
Recent Templabes | NET Framework 4 - | Sant by Defaus = EEEE search instalied Tem O b
Enstadled Templites d
; Type Visual CF
\) _||-_-E Windows Forme Applicatson Visual C#
s Wisual Basic — 4 A project for oreating a CF class brary
D m - - L)
Visual Co-e LF‘ Class Library Wisual C#
Visusl F&
Other Project Types P ASPNET Web Apphcation Visual C#
Datsbese —
Modelng Projects ;ﬁ Ermpiy ASP.MET Web Applica... Visual CF
Test Projects
Online Templates ’ {_ﬂl Sbserlaght Applicaton Visual CF
:?d ASPMNET MNC 2 Web Applca. . Visual C#F
=
i
— til‘ Sabeerlaght Mavigation Applic... Visual C#

Hum:\ Helio\WorldService

Locatsor: C50aWakWC FandLINCH Projects’ HelloWord il Browe...

T TR

You may have noticed that there is already a template for WCF Service Application in Visual Studio 2010. For this
very first example, we will not use this template. Instead, we will create everything by ourselves so you know
what the purpose of each template is. This is an excellent way for you to understand and master this new
technology.

10. Now, you can click the OK button to close this window.

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Once you click the OK button, Visual Studio will create several files for you. The first file is the project file. This is
an XML file under the project directory, and it is called HelloWorldService.csproj.

Visual Studio also creates an empty class file, called ClassI.cs. Later, we will change this default name to a more
meaningful one, and change its namespace to our own.

Three directories are created automatically under the project folder: one to hold the binary files, another to hold
the object files, and a third one for the property files of the project.

The window on your screen should now look like the following image:

@ HelloWorld - Microsoft ﬁiual_‘itudlu_ - . & L=
File Edit View Project Build Debug Team Data Tools Aschitecture Test Analyze Window Help

Pl Sl | & a0 -0 - [T B |Debug =|| Any CPU - | 2% 5

i s T |EEE| S 2|00 M3 6l 5

Salution Exploner

HHelloWordService Class] | g =1 ﬂ =l 1":l-l.

using System; o8 Sok o Files 1 L project)
using System.Collections.Generic; a _-,!._......................Jul.,-g

using System.Ling; dl Propesties
using System.Text; =3 Referemces

4] Clessl.cs

=
o sngd g

LH

namespace Hellokor ldService

1
= public class Classl < —

Koqoa g

3 Salution Explorer [e PERUes

Classl.es File Properties

sz)
Fl
Euild Action Compale

Advanced

Creating project ‘HelloWorldService'... project creation successful,

We now have a new solution and project created. Next, we will develop and build this service. But before we go
any further, we need to do two things to this project:

Click the Show All Files button on the Solution Explorer toolbar. It is the second button from the left, just
above the word Solution inside the Solution Explorer. If you allow your mouse to hover above this button, you
will see the hint Show All Files, as shown in the above diagram. Clicking this button will show all the files and
directories in your hard disk under the project folder - even those items that are not included in the project.
Make sure that you don't have the solution item selected. Otherwise, you can't see the Show All Files button.

Change the default namespace of the project. From the Solution Explorer, right-click on the
HelloWorldService project, select Properties from the context menu, or go to menu item Project |
HelloWorldService Properties... You will see the project properties dialog window. On the Application tab, change
Default namespace toMyWCFServices.

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

|

20 HelloWorld - Microsoft

T & - -
File Edit Yiew Project Build Debug Team Dgte Took Agchitecture Test Apalyze Window Help
P EH S| & a9 - -5 P [rebug -1 [any CPU N

HelleWarldSenace® 3 Solution Explorer

Application A Solution ‘HelloWarld' (1 project)
als 4 78 HelloWorkiService

Build L 4l Properties

. = References

‘ﬂ Classl .cz

sauojdiy 1ans e

Build Events

smbly name Default namespace =

o'WorldService m

ROGEOD]

Debug

Resources
et framessmoric Output hype

Senices T Frarmewark 4 -| |Classl.ub-ru§,'

i bup ghject
Settings P an -':':.I Salution Exploner Class View

‘l
» I X

Show output frorm: Build

Creating project ‘HelloWorldService'... project creation sucoessful,

Lastly, in order to develop a WCF Service, we need to add a reference to
the System.ServiceModel namespace.

On the Solution Explorer window, right-click on the HelloWorldService project, and select Add
Reference... from the context menu. You can also go to the menu item Project | Add Reference... to do this. The
Add Reference dialog window should appear on your screen.

D Add Reference T —
28 Add Reference P
MET | COM | Projects I Browse | F'.ecent|
Component Mame Yersion Runtirne Path i
System. Security 4.0.0.0 vd.0.21006 ChProgram
Systern.ServiceModel Acti... 4.0.0.0 wd.0.21006 Ch\Program
System.ServiceModel Acti... 4.0.0.0 va021006 C:\Program
System.ServiceModel.Cha... 4.0.0.0 vl 0.21006 ChProgram
Systern.ServiceModel.Disc... 4.0.0.0 wd.0.21006 Ch\Program
| System, ServicelModel 4,0.0.0 wd0.21006 C:\Prograrm
Systern.ServiceModel.Rout.. 4.0.0.0 wd.0.21006 Ch\Program
Systern.ServiceModelWebk 40,00 wd0.21006 Ch\Program
Systerm.ServiceProcess 4.0.0.0 vd.0.21006 ChProgram
Systern.Speech 4.0.0.0 wd.0.21006 C:\Program
System.Transactions 4.0.0.0 w4.0.21006 ChProgram -
I 1| (11} [3 I
oK] ’ Cancel]
b

Select System.ServiceModel from the .NET tab, and click OK.

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Now, on the Solution Explorer, if you expand the references of the HelloWorldService project, you will see
thatSystem.ServiceModel has been added. Also note that System.Xml.Ling is added by default. We will use
this later when we query a database.

S TS

In the previous section, we created the solution and the project for the HelloWorld WCF Service. From this
section on, we will start building the HelloWorld WCF Service. First, we need to create the service contract

interface.

1. In the Solution Explorer, right-click on the HelloWorldService project, and select Add | New Item... from
the context menu. The following Add New Item - HelloWorldService dialog window should appear on your
screen:

R Mew Pt - HeloWordd Service j * L ¥]
Iratalled ermplates Sont by: | Default = [:; - i T = ol
4 Visual CF Rerms . -

Code cf] Assembly Information File Visusl C# ems Type: Vial C frems

Dt L=l dun ernpty intedace defeition
General k. ‘ Clarss Diagram Wigaal CF Bermg

Web — £

Windows Forms J ADO.MNET EntdyDbject ... Vsl C2 Remis

WPF
Feparting
W oo

lcon File Viasal C# Raesms

-] ' Interdace Wil C [Rprris

Class Wil CF Bems

Cocs Fills Vivual C8 Barrs

MRS Rawnan Fae Wircinsl 78 e
IHelka'¥ oridbenvice.cs

2. On the left-hand side of the window (Installed Templates), select Visual C# Items as the template, and on
the middle side of the window, select Interface.

3. At the bottom of the window, change the Name from Interfacel.cs to IHelloWorldService.cs.

4, Click the Add button.

Now, an empty service interface file has been added to the project. Follow the steps below to customize it:

1. Add a using statement:
[l Collapse | Copy Code
using System.ServiceModel;

2. Add a ServiceContract attribute to the interface. This will designate the interface as a WCF service
contract interface.
[l Collapse | Copy Code
[ServiceContract]
3. Add a GetMessage method to the interface. This method will take a string as the input, and return

another string as the result. It also has an attribute, OperationContract.

/ [l Collapse | Copy Code

[OperationContract]
String GetMessage(String name);

http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

4, Change the interface to public.
The final content of the file IHelloWorldService.cs should look like the following:
/ =l Collapse | Copy Code
using System;
using System.Collections.Generic;
using System.Ling;
using System.Text;
using System.ServiceModel;
namespace MyWCFServices
{
[ServiceContract]
public interface IHelloWorldService
{
[OperationContract]
String GetMessage(String name);
}
}
Now that we have defined a service contract interface, we need to implement it. For this purpose, we will re-use
the empty class file that Visual Studio created for us earlier, and modify this to make it the implementation class
of our service.
Before we modify this file, we need to rename it. In the Solution Explorer window, right-click on the file ClassI.cs,
select Rename from the context menu, and rename it to HelloWorldService.cs.
Note: Visual Studio is smart enough to change all the related files and references to use this new name. You can
also select the file and change its name from the Properties window.
Next, follow the steps below to customize this class file.
1. Change its namespace from HelloWorldService to MyWCFServices. This is because this file was
added before we changed the default namespace of the project.
2. Make it inherit from the interface THelloWorldService.
[= Collapse | Copy Code
public class HelloWorldService: IHelloWorldService
3. Add a GetMessage method to the class. This is an ordinary C# method that returns a string.

[l Collapse | Copy Code
public String GetMessage(String name)

{
}

"

return "Hello world from + name +

LN L
- 3

\he final content of the file HelloWorldService.cs should look like the following:

\

=l I I !
— L UNapsc T LUPY LUUC

using System;

using System.Collections.Generic;
using System.Ling;

using System.Text;

namespace MyWCFServices

{

http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Rectangle

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Rectangle

public class HelloWorldService: IHelloWorldService

{
public String GetMessage(String name)
{
return "Hello world from " + name + "!";
¥
}

Now, build the project. If there is no build error, it means that you have successfully created your first WCF
Service. If you see a compilation error, such as "'ServiceModel' does not exist in the namespace 'System', this is
probably because you didn't add the System.ServiceModel namespace reference correctly. Revisit the
previous section to add this reference, and you are all set.

Next, we will host this WCF Service in an environment and create a client application to consume it.

S

The HelloWorldService is a class library. It has to be hosted in an environment so that client applications may
access it. In this section, we will explain how to host it using the ASP.NET Development Server. Later, in the next
section, we will discuss more hosting options for a WCF Service.

<Creating the host application >

There are several built-in host applications for WCF Services within Visual Studio 2010. However, in this section,
we will manually create the host application so that you can have a better understanding of what a hosting
application is really like under the hood. In subsequent chapters, we will explain and use the built-in hosting
application.

To host the library using the ASP.NET Development Server, we need to add a new web site to the solution. /
Follow these steps to create this web site:

1. In the Solution Explorer, right-click on the solution file, and select Add | New Web Site... from the context
menu. The Add New Web Site dialog window should pop up.
2. Select Visual C# | Empty Web Site as the template, and leave the Location set as File System. Change the

b site name from WebSitel to C:\SOAwithWCFandLINQ\Projects\HelloWorld\HostDevServer, and click OK.

Ijon Tichy
Rectangle

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Fecend Template
Inectalied Templates

Wigual Basic ECH
Wisual O

NET Framewnoskd ;anh,eﬂa‘iut T . D parch Installed Templates 0 i

Type: Vil CF

&

ASP NET Web Site Vi 2
fun ermpty Wb site

AP NET Web Service WVigiapl CF

Empty Web St Viual CF

Labrgriaghi 1.0 Web Site Vinuial CF

459 NET Reports Web Site Wisual CF

2
L
B,
I;:":- WCF Senvice igual O
&
@

Dymamic Data Ling to S0 Web Site Visual OF

My s Mt Fos e Wik Site

WCFandUING Pregects' HelloWorld Host Devierr =

T e |

Now in the Solution Explorer, you have one more item (HostDevServer) within the solution. It will look

like the following:

Solution Explorer * B X

S|FRlalze
,3 Solution "HelloWoarld' (2 projects)
4 P C\.A\HostDevServer,
= web.config

4 E HelloWorldService

> [=d| Properties

» x| References
i bin
> i1 ohj

] HelleWorldService.cs
#] HelloWorldService.cs

L"-’f*g Solution Explorer WW

K

Next, we need to set the website as the startup project. In the Solution Explorer, right-click on the web
siteC:\...\HostDevServer, and select Set as StartUp Project from the context menu (or you can first select the web
site from the Solution Explorer, and then select the menu item Website | Set as StartUp Project). The web
siteC:\...\HostDevServer should be highlighted in the Solution Explorer, indicating that it is now the startup

project.

Because we will host the HelloWorldService from this web site, we need to add a HelloWorldService
reference to the web site. In the Solution Explorer, right-click on the web site C:\...\HostDevServer and select Add

ference... from the context menu. The following Add Reference dialog box should appear:

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

o Add R.EfEI'E'HEE-_# ! “-_ &u

MET COM | Projects | Browse | Recent

-~

Project Marme Project Directory
HelleWorldService CASOAWRhWCFandLING\ProjectsHell

| oKk | [Cancel

In the Add Reference dialog box, click on the Projects tab, select the HelloWorldService project, and then
click OK. You will see that a new directory (bin) has been created under the HostDevServer web site, and two files
from the HelloWorldService project have been copied to this new directory. Later on, when this web site is
accessed, the web server (either ASP.NET Development Server, or IIS) will look for the executable code in

thisbin directory.

@he host ap@

Now we can run the website inside the ASP.NET Development Server. If you start the web site HostDevServer, by
pressing Ctrl+F5, or select the Debug | Start Without Debugging... menu, you will see an empty web site in your
browser. Because we have set this website as the startup project, but haven't set any start page, it lists all of t

" @ Directory Listing -- /H
. v 1 1 1
’g_ http://localhost8080/HostDevServer/ v i4p | X |b Bing
S 7 I
| File Edit View Favorites Jools Help !

i Favorites | @ Directory Listing - /HostDevServer/

Directory Listing -- /HostDevServer/ |
Thursday, January 14, 2010 10:27 PM <dir>» 8in h
Thursday, January 14, 2010 10:33 PM 949 web.config]

Version Information: ASP.NET Development Server 10.0.0.0 l

Ml
'»Donc €& Local intranet | Protected Mode: Off fa v HK1w0% ~ H

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Highlight

If you press F5 (or select Debug | Start Debugging from the menu), you may see a dialog saying Debugging Not
Enabled (as shown below). Choose the option Run without debugging (equivalent to Ctrl+F5) and click the OK
button to continue. We will explore the debugging options of a WCF Service later. Until then, we will continue to
use Ctrl+F5 to start the website without debugging.

F |
Debugging Mot Enabled @lﬁ

The page cannot be run in debug mode because debugging is not enabled in the Web.config file,
What would you like to do?

i@ Modify the Web.config file to enable debugging.

I\ Debugging should be disabled in the Web.config file before deploying the Web
site to a preduction environment.

\- ~ Bun without debugging. (Equivalent to Ctrl+F5) I

At this point, you should have the HostDevServer site up and running. This site is actually running inside the
built-in ASP.NET Development Server. It is a new feature that was introduced in Visual Studio 2005. This web
server is intended to be used by developers only, and has functionality similar to that of the Internet Information
Services (IIS) server. It also has some limitations; for example, you can run ASP.NET applications only locally. You
can't use it as a real IIS server to publish a web site.

By default, the ASP.NET Development Server uses a dynamic port for the web server each time it is started. You
can change it to use a static port via the Properties page of the web site. Just change the Use dynamic

ports setting to false, and specify a static port, such as 8080, from the Properties window of the HostDevServer
web site. You can't set the port to 80, because IIS is already using this port. However, if you stop your local IS,

you can set your ASP.NET Development Server to us¢ port 80.

Note: even if you set its port to 80, it is still a local/web server. It can't be accessed from outside your local PC.

Properties * B X
CASOAWIithWCFandLINQ\Projects\HelloWorld\HostDevServer, ~

A [

F] -~

Always Start When Debugging True

Port number 8080 -

Use dynamic ports False 1

Virtual path /HostDevserver o
4

Full Path CASOAWIthWCFandLINGQ\Proje =
Port number

Set the port number that the ASP.MET Development Server should
use,

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

It is recommended that you use a static port so that client applications know in advance where to connect to the
service. From now on, we will always use port 8080 in all of our examples.

The ASP.NET Development Server is normally started from within Visual Studio when you need to debug or unit
test a web project. If you really need to start it from outside Visual Studio, you can use a command line
statement in the following format: /

[l Collapse | Copy Code

start /B WebDev.WebServer [/port:<port number>] /path:<physical path>
[/vpath:<virtual path>]

For our web site, the statement should be like this:

[l Collapse | Copy Code
start /B webdev.webserver.exe /port:8080

/path:"C:\SOAwithWCFandLINQ\Projects\HelloWorld\HostDevServer"
/vpath:/HostDevServer

webdev.webserver.exe is located under your .NET framework installation directory
(C\WINDOWS\Microsoft. NET\Framework\v2.0.50727 or C:\Program Files\Common Files\Microsoft
Shared\DevServer), and it may be called a different name such as webdev.webserver20.exe,
orwebdev.webserver40.exe.

Although we can start the web site now, it is only an empty site. Currently, it does not host our
HelloWorldService. This is because we haven't specified which service this web site should host, or an entry point
for this web site. Just as an ASMX file is the entry point for a non-WCF Web Service, a .svc file is the entry point
for a WCF Service, if it is hosted on a web server. We will now add such a file to our web site.

From the Solution Explorer, right-click on the web site C:\...\HostDevServer, and select Add New Item... from the
context menu. The Add New Item dialog window should appear, as shown below. Select Text File as the
template, and change the Name from TextFile.txt to HelloWorldService.svc in this dialog window.

Add New nem-c\so}iw.mwcﬁwum-ojxu\'muoWoWoanmTv\ —— il R

| Installed Templates Sort by: | Default o | Search Installed Template) ‘
| Visual Basic |
- Type: Visual C¥
‘ Visual C# Ef WCF Service Visual C# e
- A blank text file \
3 Global Application Class Visual C# |
AZ] Style Sheet Visual C# [
9 [¥
(—| TetFile Visual C#
f] Generic Handler Visual C#
‘;:j JScrpt File Visual C#
G

&' 0d DataSet Visual C=

HelloWorldService.sve Place code In sepatate file

Select master page

http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Rectangle

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Arrow

You may have noticed that there is a template, WCF Service, in the list. We won't use it now, as it will create a
new WCF Service within this web site for you (we will use this template later).

After you click the Add button in the Add New Item dialog box, an empty svc file will be created and added to
the web site. Now enter the following line in this file: \\/

=l Collapse | Copy Code
<%@ServiceHost Service="MyWCFServices.HelloWorldService"%>

nfig file>

The final step is to modify the web.config file of the web site. Open the web.config file of the web site and change
it to be like this:

= Collapse | Copy Code

<?xml version="1.0"?>
<configuration>
<system.web>
<compilation debug="false" targetFramework="4.0" />
</system.web>
<system.webServer>

<modules runAllManagedModulesForAllRequests="true"/>
</system.webServer>
<system.serviceModel>
<behaviors>
<serviceBehaviors>
<behavior name="MyServiceTypeBehaviors">

<serviceMetadata httpGetEnabled="true" />
<serviceDebug includeExceptionDetailInFaults="false" />
</behavior>

</serviceBehaviors>
</behaviors>
<services>
<service name="MyWCFServices.HelloWorldService"
behaviorConfiguration="MyServiceTypeBehaviors"
<endpoint address="" binding="wsHttpBinding"

contract="MyWCFServices.IHelloWorldService"/>
<endpoint contract="IMetadataExchange"
binding="mexHttpBinding" address="mex"/>

</service>
</services>
</system.serviceModel>

</configuration>

The behavior httpGetEnabled is essential, because we want other applications to be able to locate the
metadata of this service. Without the metadata, client applications can't generate the proxy and thus won't be
able to use the service.

We use wsHttpBinding for this hosting, which means that it is secure (messages are encrypted while being
transmitted), and transaction-aware (we will discuss this in a later chapter). However, because this is a WS-*
standard, some existing applications (for example: a QA tool) may not be able to consume this service. In this
case, you can change the service to use basicHttpBinding, which uses plain unencrypted texts when
transmitting messages, and is backward compatible with traditional ASP.NET web services (ASMX Web Services).

The following is a brief explanation of the other elements in this configuration file:

Configuration is the root node of the file.
system.serviceModel is the top node for all WCF Service specific settings.
Within the services node, you can specify the WCF Services that are hosted on this web site.

http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Rectangle

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Rectangle

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Rectangle

Ijon Tichy
Highlight

Ijon Tichy
Highlight

In our example, we only have one WCF Service, HelloWorldService, hosted in this web site.

. Each service element defines a WCF Service, including its name, behavior, and endpoint.

. Two endpoints have been defined for HelloWorldService, one for the service itself (an application
endpoint), and another for the metadata exchange (an infrastructure endpoint).

. Within the serviceBehaviors node, you can define the specific behaviors for a service. In our example,

we have specified one behavior, which enables the service meta data exchange for the service.

<Startir lication™

Now, if you start the web site by pressing Ctrl+F5 (again, don't use F5 or the menu option Debug | Start
Debugging until we discuss these, later), you will find the file HelloWorldService.svc listed on the web page.
Clicking on this file will give the description of this service, that is, how to get the WSDL file of this service, and
how to create a client to consume this service. You should see a page similar to the following one. You can also
set this file as the start page file so that every time you start this web site, you will go to this page directly. You
can do this by right-clicking on this file in Solution Explorer and selecting Set as Start Page from the context
menu.

& HelloWorldService Service - Windows Internet | Explorer
—

m http://localhost 8080 /HostDevServer/HelioWor v | ¢
e ———

File Edt View Favorites Tools Help

i¢ Favorites [HelloWorldService Service

HelloWorldService Service ‘

You have created a service.

To test this service, you will need to create a dient and use it to call the service. You can do this using the svcutil.exe
tool from the command line with the following syntax:

m

sveutil.exe hitp://localhost:8080/HostDevServer/HelloWorldService . sve?wadl

This will generate a configuration file and a code file that contains the client class. Add the two files to your client
application and use the generated client class to call the Service. For example:

cs

HelloWorldServiceClient client = new HelloWerldServiceClient()
Use the 'client ariable to call operations on the service
/ Always close the client. y

client.Close():

& Local intranet | Protected Mode: Off v R10% ~

Now, click on the WSDL link on this page, and you will get the WSDL XML file for this service. The WSDL file gives
all of the contract information for this service. In the next section, we will use this WSDL to generate a proxy for
our client application.

Close the browser. Then, from the Windows system tray (systray), find the little icon labeled ASP.NET
Development Server - Port 8080 (it is on the lower-right of your screen, just next to the clock), right-click on it,
and select Stop to stop the service.

Ijon Tichy
Rectangle

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Creating F Service™

Now that we have successfully created and hosted a WCF Service, we need a client to consume the service. We
will create a C# client application to consume the HelloWorldService.

In this section, we will create a Windows console application to call the WCF Service.

@e client applicati@

First, we need to create a console application project and add it to the solution. Follow these steps to create the
console application:

1. In the Solution Explorer, right-click on the solution HelloWorld, and select Add | New Project... from the
context menu. The Add New Project dialog window should appear, as shown below:
Add New Project | |
| Fecest Templates tall B |-
| Intalled Templates = - |
WPRF .I".ppln’_.ﬂ‘-q:ﬂ Viswal C# ype Voud
Visuad Basic & project for creating @ command-line [
4 Vel C# = applicsten
Windows gf \WPF Browser Application Visual CF
Web
Oifice = m Consaole &pphoation Wsual CF
Clewd Servcs I
E;pnrhn.g 'Ea F‘ WCF Senete Appheation Veual C=
SharePaint - |
Sibverlight ‘ ‘..i J Enable Windows Azure Took Viswal CF
Test
WCF esrf| Windows Forms Control Libse_ Visual CF
Workflow =

Exgel 2007 Weskbook Visual Co

Owierve Tormyplates

Select Visual C# | Cons&e Application as the template; change the project name from the defaulted value
of ConsoleApplicationl to HelloWorldClient, and leave the location
asC\SOAwithWCFandLINQ\Projects\HelloWorld. Click the OK button. The new client project has now been
created and added to the solution.

@he proxy and conﬁ@

In order to consume a WCF Service, a client application must first obtain or generate a proxy class.

2.

We also need a configuration file to specify things such as the binding of the service, the address of the service,
and the contract.

To generate these two files, we can use the svcutil.exe tool from the command line. You can follow these steps to
generate the two files:

1. Start the service by pressing Ctrl+F5 or by selecting menu option Debug | Start Without Debugging (at
this point, your startup project should still be HostDevServer; if not, you need to set this to be the startup
project). Now, you should see the introduction window for the HelloWorldService service, as we saw in the
previous section.

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

2. After the service has been started, run the command line svcutil.exe tool with the following syntax
(SvcUtil.exemay be in a different directory in your machine; for example in Windows 7, it is under

the v7.0A directory):

1

C:\SOAWithWCFandLINQ\Projects\HelloWorld\HelloWorldClient>

"C:\Program Files\Microsoft SDKs\Windows\v6.0\Bin\SvcUtil.exe"
http://localhost:8080/HostDevServer/HelloWorldService.svc?wsdl
/out:HelloWorldServiceRef.cs /config:app.config

=l Collapse | Copy Code

You will see output similar to that shown in the following screenshot:

nication Found » Version 3.8.4586.21521]
poration. ALl wig reserved.

I'-'ITTF'rlpf'lrl'q to download metadata From *httj lhozt :BA8A-HostDevierver~Hello
dSery 2dl’ wsing WE-Metadata E or DISCO.

Jithic [':IanI I HL'.' ProjectssHelloWorld-HelloWorldClient~HelloWorldServiceRef .
lit hWCFandLIMQ“ProjectszssHellolWorld He lloWorldClientsapp.conf ig

f 5
Bl Command Prompt \1/ = | = &J

Now, two files have been generated: one for the proxy (HelloWorldServiceRef.cs), and the other for the

configuration (app.config).

If you open the proxy file, you will see that the interface of the service (IHelloWorldService) is mimicked
inside the proxy class, and a client class (HelloWorldServiceClient) is created to implement this interface.
Inside this client class, the implementation of the service operation (GetMessage) is only a wrapper that c

delegates the call to the actual service implementation of the operation.

Inside the configuration file, you will see the definitions of the HelloWorldService, such as the endpoint address,

binding, timeout settings, and security behaviors of the service.

@ng the client @

Before we can run the client application, we have some more work to do. Follow these steps to finish the

customization:

1. Adding the two generated files to the project: In Solution Explorer, click Show All Files to show all the
files under the HelloWorldClient folder, and you will see these two files. However, they are not included in the
project. Right-click on each of them and select Include In Project to include both of them in the client project.
You can also use menu Project | Add Existing Item ... (or the context menu Add | Existing Item ...) to add them to

the project.

2. Adding a reference to the System.ServiceModel namespace: Just as we did for the project
HelloWorldService, we need to add a reference to the WCF .NET System.ServiceModel assembly. From the
Solution Explorer, just right-click on the HelloWorldClient project, select Add Reference... and choose .NET

System.ServiceModel. Then, click the OK button to add the reference to the project.

3. Modify program.cs to call the service: in program.cs, add the following line to initialize the service client

object: /

HelloWorldServiceClient client = new HelloWorldServiceClient();

=hcoltapset-Copy-Code—

http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Rectangle

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Arrow

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Rectangle

\L Then, we can call its method just as we would do for any other object:

ECottapse {Copy Code

Console.WriteLine(client.GetMessage("Mike Liu"));

Pass your name as the parameter to the GetMessage method so that it prints out a message for you.

We are now ready to run this client program.

First, make sure the HelloWorldService has been started. If you previously stopped it, start it now (you need to
set HostDevServer as the startup project, and press Ctrl+F5 to start it in non-debugging mode).

Then, from Solution Explorer, right-click on the project HelloWorldClient, select Set as StartUp Project, and then
press Ctrl+F5 to run it.

You will see output as shown in the following image:

7

- — - T T T |
C:\Windows\system32\cmd.exe [‘:’ RS |i&]

Hello world from Mike Liu!
Press any key to continue . . . _

Because we know we have to start the service before we run the client program, we can make some changes to
the solution to automate this task; that is, to automatically start the service immediately before we run the client
program.

To do this, in Solution Explorer, right-click on the solution, select Properties from the context menu, and you will
see the Solution 'HelloWorld' Property Pages dialog box.

http://www.codeproject.com/Articles/97204/Implementing-a-Basic-Hello-World-WCF-Service
Ijon Tichy
Highlight

Ijon Tichy
Arrow

Ijon Tichy
Rectangle

Ijon Tichy
Highlight

Ijon Tichy
Oval

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Highlight

Ijon Tichy
Oval

Solution "HelloWorld' Property Pages —_— "' -— il %

M
4 Commaon Properties Current selection
Startup Project Single startup project
Project Dependencies el |
Debug Source Files Ladln B
Code Analysis Settings @ Multiple staftup projects:
Configurabion Properties |
Project Acticn +
C A\ HostDevServer, Start without debugging | + |
HellaWorldClient None =
HellaWorldService None
Start
Start without debugging
[Ok] | Cancel | Apply

On this page, first select the option button Multiple startup projects. Then, change the action
of C:\...\HostDevServer\to Start without debugging. Change HelloWorldClient to the same action.

HostDevServer must be above HelloWorldClient. If it is not, use arrows to move it to the top.

To try it, first stop the service, and then press Ctrl+F5. You will notice that HostDevServer is started first, and then
the client program runs without errors.

Note that this will only work inside the Visual Studio IDE. If you start the client program from Windows Explorer
(C\SOAWithWCFandLINQ\Projects\HelloWorld\ HelloWorldClient\bin\Debug\HelloWorldClient.exe) without first
starting the service, the service won't get started automatically, and you will get an error message saying 'Could
not connect to http.//localhost:8080/HostDevServer/HelloWorldService.svc'.

In this article, we have implemented a basic WCF Service, hosted it within the ASP.NET Development Server, and
created a command line program to reference and consume this basic WCF Service. At this point, you should
have a thorough understanding as to what a WCF is under the hood. You will benefit from this when you
develop WCF Services using Visual Studio WCF templates, or automation guidance packages. The key points
covered in this chapter are:

A WCF Service is a class library, which defines one or more WCF service interface contracts

The System.ServiceModel assembly is referenced by all of the WCF Service projects

The implementations of a WCF Service are just regular C# classes

A WCF Service must be hosted in a hosting application

Visual Studio 2010 has a built-in hosting application for WCF Services, which is called ASP.NET
Development Server

A client application uses a proxy to communicate with WCF Services

A configuration file can be used to specify settings for WCF Services

Note: this is chapter 2 from my new book "WCF 4.0 Multi-tier Services Development with LINQ to Entities" (ISBN
1849681147). This new book is a hands-on guide to learn how to build SOA applications on the Microsoft

platform using WCF and LINQ to Entities. It is updated for VS2010 from my previous book: WCF Multi-tier
Services Development with LINQ.

With this new book, you can learn how to master WCF and LINQ to Entities concepts by completing practical
examples and applying them to your real-world assignments. This is the first and only book to combine WCF and
LINQ to Entities in a multi-tier real-world WCF Service. It is ideal for beginners who want to learn how to build
scalable, powerful, easy-to-maintain WCF Services. This book is rich with example code, clear explanations,
interesting examples, and practical advice. It is a truly hands-on book for C++ and C# developers.

You don't need to have any experience of WCF or LINQ to Entities to read this book. Detailed instructions and
precise screenshots will guide you through the whole process of exploring the new worlds of WCF and LINQ to
Entities. This book is distinguished from other WCF and LINQ to Entities books by that, this book focuses on how
to do it, not why to do it in such a way, so you won't be overwhelmed by tons of information about WCF and
LINQ to Entities. Once you have finished this book, you will be proud that you have been working with WCF and
LINQ to Entities in the most straightforward way. You can see how much I have helped others to learn WCF and
LINQ by reading the Customer Reviews on Amazon for my previous book.

You can get this book from Amazon or from the publisher's website (This book has been updated to .NET
4.5/Visual Studio 2012. You can buy this book from Amazon, or from the publisher's website
athttp://www.packtpub.com/windows-communication-foundation-4-5-multi-layer-services-development-
framework/book).

This article, along with any associated source code and files, is licensed under The Code Project Open License

(CPOL)

http://www.amazon.com/Multi-tier-Services-Development-LINQ-Entities/dp/1849681147/ref=sr_1_1?ie=UTF8&qid=1368925988&sr=8-1
https://www.packtpub.com/wcf-4-0-multi-tier-services-development-with-linq-to-entities/book
http://www.amazon.com/Multi-Layer-Services-Development-Entity-Framework/dp/1849687668/ref=sr_1_1?ie=UTF8&qid=1368925767
http://www.packtpub.com/windows-communication-foundation-4-5-multi-layer-services-development-framework/book
http://www.packtpub.com/windows-communication-foundation-4-5-multi-layer-services-development-framework/book
http://www.codeproject.com/info/cpol10.aspx
http://www.codeproject.com/info/cpol10.aspx
Ijon Tichy
Highlight

